Mission Assurance Division

"Forewarned...Forearmed"

Infrastructure Decision Support for Government and Industry

Naval Surface Warfare Center Dahlgren Division

NSWCDD

Applying Interdependencies Using the 5 Ws

DoD Energy Issues: A Perspective

Regional Energy Critical Infrastructure Resiliency
Conference

Pittsburgh, PA
October 29-31, 2007

Outline Outline

- MAD Organization and Capabilities
- Why Energy Is Important to DoD?
- Power Vulnerabilities to the DoD Mission
- Alternative Fuel/Electricity Potentials
- Current Processes
- DoD Energy Strategy Issues
- Approach to Managing Risk
- Risk and Interdependencies (5 Ws)

Our Work

- Make the Country's infrastructures more resilient to natural/terrorist threats & attacks
- DoD Support to Civil Authorities
- Enable quick mission recovery after an attack
- Support decision makers using solutions oriented analysis
- Representative customers
 - US Department of Defense
 - US Department of Homeland Security
 - US State Department
 - State Governments
 - US Secret Service
 - NASA

MAD Evolution

Joint Program Office for Special Technology Countermeasures

JPO-STC

Established **Sept. 1988** by direction of USD(A), with Navy as Executive Agent

Special Technology Vulnerability Assessments of Blue Force Systems

Commercial Infrastructure Nodal Analysis **Defense Program Office** for Mission Assurance

DPO-MA

Established **Oct. 2003** by direction of ASD(HD)

Mission Assurance Division

MAD

Established Sept. 2005 as ASD(HD) designated Center of Excellence

Critical infrastructure analysis for DoD, federal, state, and local agencies

MAD Partnerships

- **Business**
- Engineering
 - Chemical

-Industrial

Civil

- -Mechanical
- **Communications**
- -Nuclear

Computer

- -Petroleum
- Electrical/Electronic
- -Systems

- Finance
- Geography
- **Humanities**
- Information Technology
- Management
- **Mathematics**
- Military Technology
- Modeling & Simulation
- Operations Research
- **Physical Sciences**
- **Project Management**

Core Capabilities

- Mission Area Analysis support What am I required to do, and what do I do it with?
- Conduct infrastructure characterization What infrastructure supports my requirements?
- Commercial network mapping and analysis (e.g., EP, NG/POL, Trans, Water, Communications, Chemical, Mail) – Connecting the dots, identifying the networks
- Identification of intra/inter-dependencies How are they linked together...determining what's really critical to support our mission?
- Assessments for verification/validation of data and identification of vulnerabilities
- Integration of results from disparate sources What's the overall picture...where's my greatest risk?
- Provide analysis and products through Situational Awareness Technologies –
 Information for the decision makers
- Situational Awareness Technologies (SAT) development and implementation –
 Developing tools to support the decision makers

Holistic Systems Engineering, Analysis, Integration, & Technology Development

Infrastructure Network Focus

- Civilian and Military Impact
- Commercial Infrastructures
 - 8 Major Areas
- Defense Infrastructures
 - 10 DoD Sectors (including DIB)
- Global Scope
- Networked vs. Asset Approach

- Single Point of Failure Identification
- Mission Linking & Impact Analysis
- Infrastructure Network Analysis
- Vulnerability Identification
- Supply to End User Analysis
- Nodal Analysis
- Global Military Base Assessment
- Government Facility Assessment
- Industry Collaboration
- DoD & Government Collaboration
- DoD & National Exercise Support
- Tool Development
- Data Integration
- Database Design & Development
- Imagery Integration & Analysis
- Predictive Analysis

Capabilities Approach

Product Examples

Country Assessments

Sensitive information (18)

NSSEs

- Super Bowl XXXVIII
- G-8 Summit
- Daytona 500
- DNC Boston
- RNC NYC
- Presidential Debates
- Vice Presidential Debate
- Presidential Inauguration
- · State of the Union Address

<u>Assessments</u>

- · Port of Morehead City
- Port of Long Beach
- Japan (multi sites)
- Korea (multi sites)
- Ramstein
- Camp Lejuene
- MCAS Yuma
- Navy Southeast Region
- Navy Southwest Region
- · Port Elizabeth, NJ
- Port of Philadelphia
- NSA Norfolk
- · Bangor IAP, ME

State Reports

- Pennsylvania
- Virginia
- Maryland
- Alabama
- Alaska
- Florida
- Minnesota
- California
- Colorado
- New York
- West Virginia
- Washington
- South Carolina
- Georgia
- Texas
- Indiana
- Maine
- · North Carolina
- Ohio

Contingency/ Quick Turn Around

- Hurricane Impacts on FL (OASD)
- Top Four CIP States (OASD)
- Underwater Infrastructure Protection (OASD)
- Stolen Sensitive Information (NORTHCOM)
- Savannah, GA Assessment (NORTHCOM)
- Urban Area Security Initiative City List (DHS)
- Washington, DC Analysis (NORTHCOM)
- El Paso, TX, POE (NORTHCOM)
- Golden Gate Bridge Threat Analysis (NORTHCOM)
- Fairfield, Illinois GIG Assessment (DISA)
- Everglades Pipeline System Analysis (DHS)
- West Coast Cable (TRANSCOM)
- LNG in Trinidad & Tobago (SOUTHCOM)
- Global Energy Decisions Review (OASD)
- Hurricane Katrina Support (OASD, NC)
- Hurricane Rita Support (OASD, NC)
- Heartland Rivers Analysis (TRANSCOM)

Contingency/ Quick Turn Around

- Reagan Funeral (NORTHCOM)
- Explosive Analysis of RR Bridges (NORTHCOM)
- Nellis/Indian Springs (DISA)
- California Wildfires (NORTHCOM)
- Ricin Incident (ASD(HD))
- European Rail (EUCOM)
- Lake Michigan (ASD(HD))
- NDW Waterways (ASD(HD))
- Haiti (x2) (SOUTHCOM)
- Telecoms Hotels (DISA)
- U.S. Army Critical Assets (ASD(HD))
- Financial Infrastructure Threat (ASD(HD))
- NCAA Final Four (NORTHCOM)
- Air Base Analysis (Nuclear Capable) (NORTHCOM)
- Pentagon Power Analysis (ASD(HD))
- Waco, Texas Energy (ASD(HD))
- Foreign Nuclear Power Plants (PACOM)
- Texas Critical Assets (ASD(HD))
- Other Classified Tasks
- Typhoon Man-Yi (PACOM)

MAD's Experience

- The MAD has been engaged in Infrastructure/ Mission Assurance (IA) since 1994.
 - Predominately focused on CONUS infrastructures until 2002
- There are many vulnerabilities.
 - The nature of the CONUS electric power grid presents many targets for disruption
 - DoD installations often depend on a single substation, either inside or outside the fence
- The "low-hanging fruit" has been exhausted.
 - Most easy, low cost solutions have been applied
 - Most <u>obvious</u> vulnerabilities have been identified; e.g., the first point outside the fence
- "The List" is time- and scenario-dependent.
- Regardless of the threat, vulnerabilities exist.

SE ASSURE DE LA COMPANSION DE LA COMPANS

WHAT IT TAKES:

Doing the "Homework"

FY98 & prior

Over 400 Completed Assessments
Inside and Outside the Fence

Nature of CONUS Infrastructure

- Designed and Operated to Provide Value to Shareholders
- Complex Interdependencies
 - e.g., 2003 Northeast Blackout Impacts on Cleveland Water System
- Aging Transmission Systems Built for Peaceful Times and Slower Growth
- Stressed by Market Demands
- Reliability Standards Not Mandatory or Enforced
 - DoD Has Little Influence to Date
- Source and Transport Mechanisms Frequently Located in Remote, Vulnerable Locations

No Experience With Long-term Outages (> 6 months)

Issues Issues

- Electric Power "The Grid"
 - Limited Resiliency in Electric Power Grid
 - Complex Interdependencies Virtually Every Aspect of Society Depends on Electric Power
 - All DoD Missions/Activities Are Energy-dependent
- Electric Power Infrastructure Is Soft Target With Numerous Vulnerabilities
 - Physical Attacks (e.g., Transformer Destruction/Damage)
 - Minimal Input a Bullet Can Achieve Maximum Effect Transformer Destruction
 - Insufficient Back-up Transformer Availability to Respond to Large-scale Attack
 - Electromagnetic Pulse (EMP)
 - Cyber Attacks
- Prevention Possible, but CHALLENGING
 - Short-, Medium-, and Long-term Mitigation Options Available
 - Continued Testing/Research Required to Fully Understand Risks/Vulnerabilities

How Easily Is Electricity Disrupted?

Cause	Usual / Target	Impact	Risk / Duration
1 Tree branch	Line	Power loss, water system contamination	Regional blackout/3 days
Heat wave	Line, substation equipment	Power loss, premature aging of equipment	Rotating blackouts/2 hours
Hurricanes/ tornadoes	Line, substation, equipment, power plant	Power loss, water contamination, transportation	3 – 60 days (Katrina)
Market Manipulation	Unscheduled maintenance, re-routing	Price, rolling blackouts, demand management	Calif – 8 months
Deliberate Acts	Substation equipment, plants, gas pipelines, cyber, telecom, water	Energy loss, water contamination, economic, communications, social disruption	Loss of Energy/ 2+ years

Why Should DoD Care?

- 85% of DoD-dependent Physical Infrastructure Is Commercially Owned
- 98% Dependent on Outside-of-the-fence Fuel and Electric Power
 - Exceptions: China Lake
 - 100% on Other Commercial Infrastructures (e.g., Equipment, Maintenance Personnel)
- Commercial Infrastructures Are Soft Targets
- Easily Disrupted

Hurr Do

Hurricane Katrina

DoD Mission Issues

30 August 2005

DoD – Facilities

11 DoD facilities evacuated aircraft

DIB – Raytheon Forest, MS

Shut-down due to power outage - no immediate DoD impact

DFSP – 20 Defense Fuel Support Points supplying 1 million gallons/year of JP-5 & JP-8

<u>DoD Impact</u> No major mission impact

ASSUPPLY OF THE PROPERTY OF TH

Hurricane Katrina Impact

Petroleum Infrastructure

29 August 2005

90% shutdown of oil & gas production in Gulf of Mexico

Colonial, Plantation, & Capline pipeline systems shut down due to loss of electric power

1 September 2005

Colonial 40% capacity

Plantation 25% capacity

13 September 2005

900,000 b/d refinery capacity remains idle (Chevron, ConocoPhillips, ExxonMobil, & Murphy)

Impact

Price spike

DoD Dependency - U.S. Pipelines

Colonial & Plantation Systems

- ~135 Defense Fuel Support Points
- Primary
 Transportation Route
 for JP-5, JP-8, & F-76
- Systems shut down or operated at reduced rate during Hurricane Katrina & Rita in '05

Electric Power Story

- Transmission Congestion Primarily Caused by Power Trading Market
- Substations Are Key Assets That Cause the Largest Outage Footprint on the Grid
- Military Mission Vulnerabilities
 - Single Point of Failure Feeding Installations
 - Elimination of Substation Put Installations Into Outage Footprint
 - High Reliance on Diesel for Backup Generation
- DoD Energy Requirements Especially in CONUS Have Much Potential to Be Supported/Augmented by "Alternate" Energy Sources or Generation Technologies

Geothermal - Optimal Locations

Municipal Waste – Optimal Locations

Landfill Gas – Excess Gas Projects

Wastewater Gas – Optimal Locations

Wind - Optimal Locations

Photovoltaic - Optimal Locations

Natural Gas - Optimal Locations

Biodiesel - Optimal Locations

Energy Stakeholders

Preventing Long-term Outages Industry Planning Criteria

Expand Number of Simultaneous Contingencies

- Traditional N-1
 - Unexpected Loss of One Bulk Electric System Facility (Line, Generator, Transformer, etc.) Caused by a Single Initiating Failure or Outage
- Expanded N-(2, 3, etc.)
 - Substations Have Multiple Bulk Electric System Facilities
 - Elimination of Substation(s) Around a Military Base Can Cause Prolonged Outage (Months)
 - Identify Multiple Contingency Scenarios and Share With Local Utility for Resolution

Special Protection System (Remedial Action Scheme)

- Automatically Takes Corrective Actions After Contingency
 - · Changes Demand
 - Changes Generation
 - Changes System Configuration
 - Does <u>Not</u> Include Underfrequency or Undervoltage Load Shedding Fault Conditions That Must Be Isolated and Out-of-step Relaying (Detects Loss of Synchronism Caused by Unstable Power Swings)

Managing Long-term Outages A Different Paradigm

Micro-Grid

- Extended regional outages (months)
- "Strategic Islanding" or maintaining a micro-grid using fuel and generation diversity
- Electric power energy security through military/utility collaboration
- DoD energy savings through military/utility collaboration

DoD Energy Vulnerability Issues

- Are DoD vulnerabilities known for mission assurance?
- What is the DoD operational standard and who sets that?
- Who has responsibility to resolve?
- Are the priority problems being fixed?
- Are the current work arounds sufficient?
- Can all the priority vulnerabilities be resolved under the current systems?
- Who has management / oversight responsibility?

Mitigating DoD Energy Vulnerabilities

- GWOT Requires an Imaginative Approach for DoD Energy Security to Defeat the Enemy
 - Sufficient Local Generation and Pre-scripted Schemes for Islanding Mission-critical Functions and Installations
 - Reduce Single-line Connections to the Electric Power Grid Maximize Redundancy
 - Maximum Protection From Control/Protective System Vulnerabilities
 - Minimize Use of Shore Power by Naval Vessels in Foreign Ports
 - Identify Viable Energy Independent Installations Tapping Renewable and Alternate Energy Sources
 - Consider Relocating Mission-critical Operations to Bases Capable of Islanding Power and Fuel
 - Use DoD Renewable Energy Assessment Final Report (14 March 2005) and Apply, Where Practicable

Risk Management Program examined in two parts

- Risk Assessment what critical operations are at risk
- Risk Response what can be done to reduce risk

Risk Management Program highlights

- Top-down approach based on operations deemed critical by an organization (company, agency, department, government, etc.)
- Focused on assuring accomplishment of those critical operations and the assets they are dependent upon
- Assets can be people, property, equipment, activities, and operations, information, facilities, and materials to include supporting private/public infrastructure
- Examines vulnerabilities and risk from all threats/hazards
- Prioritizes critical assets to support resource allocation and remediation decisions

An Ounce of Prevention!

Integrated Risk Assessment Process

Most (if not all) networks rely on other networks to perform their functions.

To understand the risk (including extent) of a network disruption, understanding the risk of the supporting networks is crucial.

Incorporating Interdependencies into Risk Assessments:

- Mission Focus (tendency is to want to boil the ocean)
- Characterize THE network
- Characterize the supporting networks
- Develop generic network linking rules based on the 5Ws
- Use Who, What, Why, Where, When for linking of networks
- Use all hazards approach
- Identify criticality (answers the "so what?")
- Use datasets that can be queried (e.g. relational, historical, GIS visualization)

The Five Ws

Interdependencies - Commodities produced by other networks that makes THE network function.

- 1. Who is supplying the commodity, name and phone number
- 2. What is the commodity, the quantity needed
- 3. Why is there a need for the commodity, the function the commodity performs for THE network
- 4. Where is the commodity needed, the asset or touch point that links the commodity flow to THE network, physical location
- 5. When is the commodity needed, for how long is it needed

Example of Applying the 5 Ws

Electric Power Dependence on Water

Who: Municipal Water Company, Bill Waters, 866-222-9222

What: Water, 2 gal/min

Why: Maintain 1000 amp transformer output to meet demand

Where: Transformer (Latitude: 47.15 Longitude: -122.52)

When: Between 4-6 pm June, July & Aug

ASSURA EN PROPERTY OF THE PROP

Interdependency Recommendations

- Use a phased approach to limit initial complexity (Manual, automation to support analysts, modeling, simulation)
- Build out interdependency rules for use by analysts (Logical, Geo, Legal, Capacity, Reconstitution, etc.)
- Develop tools to support the analysts vs. tools that require analytical support
- Consider network operator intervention when modeling impacts
- Standardize data format and define essential data elements
- Ensure data quality through a scoring process
- Always consider the "so what?"
- Focus on 'your' mission

Mission Assurance Division CONTACT INFORMATION

"Forewarned...Forearmed"

Infrastructure Decision Support for Government and Industry

Mike Burks

Senior Engineer Infrastructure and Network Analysis & Assessment Branch

PHONE: (540) 653-4973

FAX: (540) 653-7648

EMAIL: michael.w.burks@navy.milburksmw@nswcdd.navy.smil.mil

