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Abstract

We have merged agent-based modeling, discrete event simulation, and geographical information systems (GIS) into 
one seamlessly integrated platform to simulate major disaster events in real time. One advantage of this hybrid 
architecture is the ability to assess the impact of agent rules on outcomes in disaster scenarios. A heuristic top-level 
framework has been developed to generate evolutionary, near-optimal dispatching decisions for the responders. The 
model considers multiple objectives and can dynamically drive the overall system towards a better performance over 
time. Because the users can interact with the simulation platform at a very high level linked to familiar interface 
features such as maps, it is accessible to end-users such as incident managers and decision makers with little 
simulation experience.
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1. Introduction
Effective decision support for disaster planning and response management requires simulation of a large number of 
time-varying factors and agents. These problem features render any purely analytical methods either ineffective or 
inefficient. Simulation is an attractive alternative approach to model the behavior of the large-scale stochastic 
systems. We have used agent-based discrete event simulation as a primary tool to model the first and secondary 
responses to catastrophic disasters. The integrated system includes comprehensive capabilities to simulate the 
responders’ operations/actions and interactions with environmental factors such as weather patterns, traffic 
congestion and victim deterioration. The system has been “validated” by comparisons with historical data and 
review of results by experts. Although simulation is useful for modeling the expected behavior of complex 
operational systems, one must maintain the caveat that it is a prescriptive tool that may not necessarily be 
compatible with optimization procedures directly. One great advantage of our simulation system – called Dynamic
Discrete Disaster Decision Support System (D4S2) – is the seamless integration of the simulation architecture with 
other components including a geographical information system (GIS) infrastructure data, user-friendly graphical 
interfaces and disaster information databases [1-4]. The computational flow in the system architecture is also based 
upon the recognition that disaster responses are an evolutionary decision process. The facts that decisions are 
influenced by events and implementation of decisions will alter subsequent events are implicit in the iterative and 
interactive updating of the data bases during the simulation, which effectively reset the initial conditions for the next 
decision iteration. We have also incorporated a Mixed Integer Program (MIP) model formulation (see section 3) to 
set initial conditions for local optimization of solutions, which greatly reduces computation time and resources.
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2. Evolutionary Decision General Framework
Most large-scale systems and complex processes evolve over time frames ranging from hours to days to even longer
periods. The response of agencies to catastrophic disaster is a typical example of a large-scale complex system 
because a major disaster normally involves a large number of victims, multiple response parties from each agency 
and multiple response agencies (governmental and non-governmental sectors). During the course of the event, no 
single decision path is universally applicable to all scenarios: new, unexpected conditions may arise for which 
previous response decisions must be modified. Figure 1 illustrates a basic simulation-based evolutionary decision 
process.

Figure 1: Evolutionary decision process

The evolutionary decision procedure is described as follows:
 At time it :

 Deploy a new decision iD  which was made in the last iteration of the process. If t 0 (start of the 

event), an experience-based expert decision 0D  is preferred because there is no time for detailed 

analysis. This decision must be valid for “all hazards,” in the sense that it must (1) not exacerbate 
the situation directly (i.e., produce a deleterious outcome) and (2) not create deleterious 
bottlenecks or constraints on ensuing decisions.

 Real-time, actual data of current time can be input as initial conditions for the first iteration of the 
decision process.

 During time it  ~ 1it :

 Run the simulator to the next decision point (simulation time) 1it . Store the simulation results of 

time 1it  as 1iSR .

 Solve a closed-form Mixed Integer Program (MIP, see section 3 below) formulation which can 

approximate the simulation system to rapidly obtain a near-optimal solution 1

~
iD at time 1it . 1iSR

and/or earlier simulation results will be used to form the MIP model. The objectives are evaluated 
for time period 1it  ~ 1it .

 From 1

~
iD , we perform simulation-based local searches to improve the solution. The best solution 

becomes 1iD . The simulator runs from 1it  to 1it  (simulation time) using 1iSR  as the initial 

conditions.
 At time 1it :

 Deploy 1iD  and begin the next iteration.

  
3. Mixed-Integer Program (MIP) Formulation
The disaster response simulation system can represent the real system better than analytical models but at great 
expense in computation time. However, because disaster response decisions are normally extremely urgent, a time-
consuming simulation process to search for optimal solution(s) is impractical and undesirable. An analytical MIP 
model has been developed to streamline the process of obtaining optimal solutions.  The MIP model provides a rapid 
solution to guide the search into a promising neighborhood in the solution space. If initial search conditions are 
established by high-quality (near-optimal) initial solutions from the MIP formulation, only a few full simulation runs 
are needed for local optimization.

Solutions to complex decision problems often require a counterbalancing (or tradeoff) of multiple, partially 
incompatible objectives. For example, in our case, it is desirable to dispatch more emergency vehicles to the scene in 
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order to increase the victim evacuation capacity. However, the introduction of too many vehicles into the response 
process (1) introduces significant congestion that can negatively impact access for other responders and the 
evaculation of casualties and (2) reduces the capacity to respond to baseline demands for responses to events such as 
heart attacks and traffic accidents. In some multi-objective cases, all objectives can be quantified in the same units
(e.g., monetary units for economic consequences) to determine the tradeoffs automatically. Otherwise, one must find 
a set of candidate solutions and let a human decide. Which solutions should we include in the candidate decision 
set? A solution is Pareto-optimal if there are no feasible solutions that are at least as good in every objective. The set 
of Pareto-optimal solutions is called the efficient frontier or the tradeoff curve. A solution is dominated if there is 
another solution better in one objective and at least as good in the rest. One approach to find Pareto-optimal points is 
to combine the objectives with some weights. If all weights are positive, the combined single-objective program 
would give a Pareto-optimal point, if an optimal solution exists [5]. The weights are normally decided by the expert 
model users after evaluating the relative importance of all the objectives.

First, we formulated a nonlinear mixed-integer program (NMIP), termed a D4S2-NMIP, by closely investigating the 
internal structure of the simulation model. The model has eight main objectives as listed below:

Obj1. Maximize scene evacuation of life-threatening victims
Obj2. Maximize scene evacuation of severe victims
Obj3. Maximize scene evacuation of moderate victims
Obj4. Minimize scene fatalities
Obj5. Minimize EMS normal response degradation
Obj6. Minimize penalty cost for calling mutual aid responders
Obj7. Minimize penalty cost for changing tasks
Obj8. Minimize dispatching distance (or time)

Note that all the objective values are evaluated for the time period of   defined in Figure 1.

Emergency response planning is basically an assignment problem. Emergency vehicles (e.g., ambulances) are 
modeled as agents in the simulation model (agent-based simulation). These agents are (1) advanced life support 
(ALS) ambulances, (2) basic life support (BLS) ambulances, and (3) fire trucks. We want to assign one of the three 
possible tasks to each of the agents: (1) responding to the disaster, (2) responding to normal incidents, and (3) 
responding to an external service area (for mutual aid partners). The model D4S2-NMIP is presented below.

D4S2-NMIP =
X

Min.   
j

jj XQw

Subject to:
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Let N  be the set of all n emergency vehicle agents in the system. All agents are divided into r subsets. Type i agents
(  ri ,...,2,1 ) are included in subset iS  such that NSi  , NSi

i
 , and ji SS  ,  rji ,...,2,1,  . In our 

problem, there are three types (r = 3 subsets) of agents: }ambulancesALS{1 S , }ambulancesBLS{2 S  and 

 trucks}Fire{3 S .

The objective function aggregates several individual objectives jQ  by imposing positive weights jw for each 

objective, based upon their relative importance. Note that all the objective weights should be positive in order to 
obtain Pareto-optimal solutions. Without loss of generality, we have minimized the aggregated objective function. If 

60



Wu, Shuman, Bidanda, Prokopyev, Kelley, Sochats and Balaban

any individual objective jQ  needs to be maximized, the jQ  should be flipped sign to negative in order to keep the 

weight term jw  positive.

The decision variables ijx  are binary. They indicate the response assignment for each vehicle agent. Because the 

task responses are mutually exclusive and collectively exhaustive, the integrity constraint (1) is necessary. Further, 
given that the type 3 task is only for mutual aid vehicles, constraint (2) specifies that the in-area vehicles cannot be 
assigned to a type 3 task for this disaster. MutAidS  is the agent subset of all mutual aid vehicles that are available for 

the disaster responses. Constraints (3) and (4) preserve basic EMS coverage by specifying that at least one 
emergency medical services (EMS) unit, ether ALS or BLS, should respond to the major disaster event and the 
normal emergency events, respectively. The objective functions jQ have formulated by carefully investigating the 

internal operations of the simulation model; space limitations preclude their inclusion in this paper.

4. Computational Experiment
A relatively small network with 20 nodes was designed as a pilot study to test the performance of the D4S2-NMIP
simulation-based approach for disaster management planning. It is depicted in Figure 2. Although the network is 
small, both the simulation and optimization are fully functional.

Figure 2: 20-node testing network

The network is completely connected (i.e., a vehicle at any one node can access to any other node through a finite 
path within the network). One-way streets are drawn as single-arrow connection lines; two-way streets are drawn as 
bidirectional arrows. Medical resources (e.g., hospitals, fire stations) are distributed on the network nodes and agent-
based emergency vehicles can travel along the network from start nodes to destination nodes.

The simulation-based optimization procedure is implemented in VB.NET. The MIP model was generated and solved 
by the CPLEX Windows API with .Net. The simulation-related data were exchanged between the .Net program and 
Rockwell Arena simulation model through a database.

A specific disaster scenario was used to demonstrate the effectiveness of the evolutionary decision making 
procedure; 260 life-threatening, 346 severe, 223 moderate casualties occurred in an event at node #4. There were 
120 deaths initially. The hospital and responder station information is listed in Table 1: there were four hospitals and 
20 ALS, 8 BLS and 10 Fire responders available. The disaster decision support system generated decisions hourly
until the scene was cleared.

The dynamic response solutions were compared with fixed solutions provided by the experts and/or protocols. 
Figure 4 compares the aggregate multi-objective value between the dynamic solutions obtained by the evolutionary 
decision procedure and the fixed expert decisions in the whole time series. For this minimization problem, the 
dynamic response solutions always obtained better overall performance.

It is hard to interpret the aggregate objective values because they do not have physical meanings. To better 
understand the dynamic solutions and their effectiveness, some key individual objectives are extracted in the 
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following. Figure 5 shows the number of victims with life-threatening (LT) injuries at the scene as a function of time 
after the catastrophic event. With the dynamic solutions, LT patients can be cleared at the 11th hour, compared with
about 19 hours using the fixed rule solutions.

Table 1: Hospital and responder stations
Hospital Info Responder Station Info

Location (Node) Capacity Node ALS# BLS# Fire# Node ALS# BLS# Fire#
#1 Unlimited #1 1 #11 1 1
#2 Unlimited #2 1 1 #13 1 3
#5 Moderate only #4 1 #14 1 1
#17 Unlimited #5 1 1 #15 3 1

#6 2 #16 2
#7 3 #17 1 3
#8 1 #18 1
#9 1 1 #19 1 1
#10 2 1
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Figure 4: Comparison of aggregate objective value
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Figure 5: Comparison of scene life-threatening victim evacuation
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The number of fatalities at the scene is another important measure of the response effectiveness. Figure 6 compares 
the numbers of fatalities between dynamic solutions and fixed solutions. Although the death rate for dynamic 
solutions is higher during the first nine hours after the response, there is a cumulative saving of five lives because 
the life-threatening victims are evacuated more rapidly. Further, although the fire responders can help treat/stabilize 
the severe victims, their appearance at the scene causes congestion that delays the EMS evacuation activity. Thus, 
the dynamic decision system dispatches the space-consuming fire trucks more conservatively to tradeoff rapid 
evacuation against an increased on-site deterioration rate of severely injured patients.
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Figure 6: Comparison of scene fatalities

5. Conclusions
This paper briefly presents a simulation-based evolutionary decision making procedure and applies heuristic 
methods to solve a real-time disaster response management problem. The computational results from a pilot case 
study have shown the advantage of using the dynamic decision support system to obtain time-dependent solutions 
compared with fixed expert/rule decisions.
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